J. Biol. Chem. 236, 2530.
Sotobayashi, H., Rosen, F., and Nichol, C. A. (1965), Proc. Am. Assoc. Cancer Res. 6, 60.
Usdin, E. (1959), J. Biol. Chem. 234, 2373. Werkheiser, W. C. (1962), Proc. Am. Assoc. Cancer Res. 3, 371.

Werkheiser, W. C. (1963), Cancer Res. 23, 1277.

Werkheiser, W. C. (1963), Cancer Res. 23, 1277. Zakrzewski, S. F. (1966), J. Biol. Chem. 241, 2957.

Coenzyme A Analogs. II. Enzymatic Conversion of D-Oxypantetheine 4'-Phosphate to Oxy-Coenzyme A*

Charles J. Stewart and William J. Ball, Jr. †

ABSTRACT: The enzymatic conversion of D-oxypantetheine 4'-phosphate to oxy-coenzyme A was investigated with coenzyme A synthesizing enzymes isolated from beef liver. DEAE-cellulose column chromatography of the enzymatic incubation mixtures containing ATP-8-14C and D-oxypantetheine 4'-phosphate separated a radioactive component identical with synthetic oxy-coenzyme A. Dephosphooxy-coenzyme A was enzymatically (a) cleaved by pyrophosphate to oxypantetheine 4'-phosphate and ATP and (b) phosphorylated by ATP to oxy-coenzyme A. Enzymatically prepared oxy-coenzyme A possessed the same inhibitory action as the synthetic material in the phosphotransacetylase reaction.

The oxygen analog of coenzyme A, oxy-coenzyme A, has been recently synthesized and shown to be a competitive inhibitor of CoA¹ in the phosphotransacetylase reaction (Stewart and Miller, 1965; Miller et al., 1966). In order to determine if oxy-CoA can be prepared enzymatically, we investigated the ability of the crude CoA-synthesizing enzyme system, isolated from beef liver by the procedure of Hoagland and Novelli (1954), to convert D-oxypantetheine 4'-phosphate to oxy-CoA.

A net synthesis of oxy-CoA was achieved *via* reactions 1 and 2.

oxypantetheine 4'-phosphate + ATP =

 $dephosphooxy-CoA + PP_i$ (1)

dephosphooxy-CoA + ATP \rightarrow ADP + oxy-CoA (2) (net) oxypantetheine 4'-phosphate + 2 ATP \rightarrow oxy-CoA + ADP + PP_i

Experimental Procedures

Materials. D-Oxypantetheine 4'-phosphate, dephosphooxy-CoA, and oxy-CoA were prepared by the procedures of Miller et al. (1966). D-Pantetheine 4'-phosphate was prepared by the procedure of Moffatt and Khorana (1961). ATP-8-14C (lot no. 6501) was purchased from Schwarz Bioresearch, Inc., and unlabeled ATP was purchased from Sigma Chemical Co. DEAE-cellulose (Selectacel standard type) was obtained from Carl Schleicher and Schuell. Phosphotransacetylase (lot no. 06155109) CoA, and acetyl phosphate were purchased from Boehringer Mannheim Corp. Lyophilized Clostridium kluyveri cells, as a source of crude transacetylase, and venom phosphodiesterase (Crotalus adamantens) were purchased from Worthington Biochemical Corp.

Methods. The Biuret reaction was used for protein determinations (Layne, 1957). Venom phosphodiesterase digestions of CoA and oxy-CoA were done by the previously described procedures (Moffatt and Khorana, 1961; Miller et al., 1966). Phosphotrans-acetylase assays were performed by the procedure of Stadtman (1952) when preparing the beef liver enzymes, and as modified by Bergmeyer et al. (1963) for the inhibition studies. The ¹⁴C content of column fractions was determined by adding 0.1-ml aliquots to 14 ml of the aqueous counting medium of Bray (1960) and

3883

^{*} From the Chemistry, Department, San Diego State College, San Diego, California 92115. Received July 28, 1966. This investigation was supported by Public Health Service Grant GM-07977 from the National Institute of General Medical Sciences. A preliminary report of a portion of this work has been published (Stewart et al., 1966). Part I of this series is Miller et al. (1966).

[†] National Science Foundation Undergraduate Research Participant, 1964-1965.

¹ Abbreviations used: oxy-CoA, oxy-coenzyme A; desulfo-CoA, desulfocoenzyme A; dephospho-CoA, 3'-dephosphocoenzyme A; dephosphooxy-CoA, 3'-dephosphooxy-coenzyme A; AMP and ATP, adenosine mono- and triphosphates. The IUB systematic name for each of the following trivial enzyme names employed in this paper is: phosphotransacetylase, acetyl-CoA; orthophosphate acetyltransferase (EC 2.3.1.8); dephospho-CoA pyrophosphorylase, ATP:pantetheine 4'-phosphate adenyly-transferase (EC 2.7.7.3); dephospho-CoA kinase, ATP:dephospho-CoA 3'-phosphotransferase (EC 2.7.1.24).

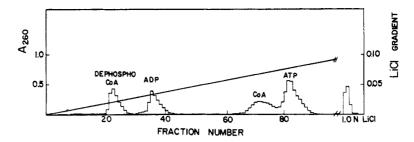


FIGURE 1: DEAE-cellulose column chromatography of pantetheine phosphate; ATP incubation mixture showing net enzymatic synthesis of CoA.

counted in a Packard Tri-Carb liquid scintillation counter. Paper chromatography was carried out by the descending technique on Whatman No. 1 paper, using ethyl alcohol-1 M ammonium acetate, pH 7.5 (7:3) solvent system. ADP and ATP were separated on DEAE-cellulose paper (Whatman Chromedia DE81) by descending elution with 10% aqueous formic acid. Adenine-containing compounds were located by their ability to absorb ultraviolet light (254 m μ). Phosphate-containing compounds were located by the method of Bandurski and Axelrod (1951). Table I lists the R_F values of the various compounds.

TABLE I: R_F Values of Compounds.

Compound	System A ^a	System B ^b
CoA	0.19	
Dephospho-CoA	0.48	
Oxy-CoA	0.16	0.02
Dephosphooxy-CoA	0.45	0.31
Oxypantetheine 4'-phosphate	0.57	
Adenosine 2'(3')-diphosphate	0.04	
Venom digest of Oxy-CoA	0.04,	
	0.57	
ATP	0.04	0.02
ADP	0.06	0.24
AMP	0.16	0.89
Peak "X"	0.15	0.34

^a Ethyl alcohol-1 м ammonium acetate, pH 7.5 (7:3). ^b Formic acid (10%)-DEAE-cellulose paper.

CoA-Synthesizing Enzymes and Incubations. The procedure of Hoagland and Novelli (1954) for the isolation from pig liver of a crude enzyme system containing dephospho-CoA pyrophosphorylase and dephospho-CoA kinase was successfully applied to beef liver. Incubations were carried out in a total volume of 2 ml at 38° for 1.5 hr and contained glycyglycine buffer, adjusted to pH 7.4 with Tris (80 μmoles), cysteine (20 μmoles), MgSO₄ (4 μmoles), ATP (5

 μ moles), enzyme system (3 mg), and substrate. The substrates were: D-pantetheine 4'-phosphate (4 μ moles), D-oxypantetheine 4'-phosphate (4 μ moles), and dephosphooxy-CoA (2 μ moles). When dephosphooxy-CoA was incubated with 40 μ moles of inorganic pyrophosphate, ATP was omitted. The reactions were stopped by placing the incubation tubes in a boiling water bath for 1 min and removing the precipitated protein by centrifugation.

DEAE-Cellulose Chromatography. The centrifuged incubation mixtures were diluted to a total volume of 25 ml and applied to the top of a 1.3 \times 50 cm DEAEcellulose (chloride form) column. The column was washed with 0.003 N HCl until the effluent was free of ultraviolet-absorbing material. The adsorbed compounds were eluted by application of an acidic lithium chloride linear gradient. The reservoir contained 350 ml of 0.12 N LiCl in 0.003 N HCl and the mixing vessel contained 350 ml of 0.003 N HCl. Fractions (5 ml) were collected at a flow rate of 0.5 ml/min. Each ultraviolet-absorbing peak was pooled. After adjusting the pH to 4.5 with dilute solutions of LiOH, the peaks were evaporated to dryness in vacuo. Lithium chloride was removed from the solid white residues by repeated extractions with small volumes of methyl alcoholacetone (1:15). After drying over P2O5 in vacuo at room temperature overnight the residual material was dissolved in 1 ml of water and characterized by paper chromatography.

The concentration of each peak was calculated from the optical density units at 260 m μ , assuming an extinction coefficient of 15 \times 10³ for the adenosine moiety.

Results

The validity of our experimental approach was tested by incubating pantetheine 4'-phosphate with ATP. Figure 1 clearly demonstrates the synthesis of CoA, 8.4 ODU, and its effective separation from the products of the enzymatic reaction mixture by DEAE-cellulose column chromatography. In addition to CoA, dephospho-CoA (8.7 ODU) and ADP (8.4 ODU) were produced in the reaction. The 1 N LiCl elution peak contains 5.2 ODU presumably, the mixed disulfide forms of CoA.

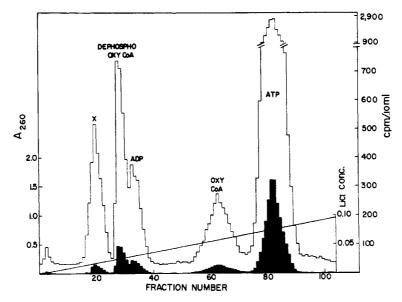


FIGURE 2: DEAE-cellulose column chromatography of oxypantetheine phosphate; ATP incubation mixture showing net enzymatic synthesis of oxy-CoA. The shaded area is the A_{260} elution profile and the upper curve is the elution pattern of radioactivity. Peak X is unidentified.

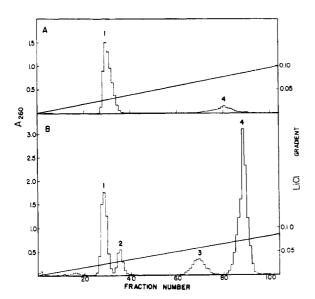


FIGURE 3: DEAE-cellulose column chromatography of dephosphooxy-CoA incubation mixtures. (A) Dephosphooxy-CoA incubated with inorganic pyrophosphate and (B) dephosphooxy-CoA incubated with ATP. Peak 1, dephosphooxy-CoA; peak 2, ADP; peak 3, oxy-CoA; peak 4, ATP.

The elution pattern of the incubation mixture containing oxypantetheine 4'-phosphate and ATP-8-14C is shown in Figure 2. The peaks containing the radioactive label are directly superimposed upon the ultraviolet-absorbing peaks. The yield of radioactive oxy-CoA was 6.5 ODU. The unidentified peak, "X," contained 3.6 ODU. The presence of label, a positive

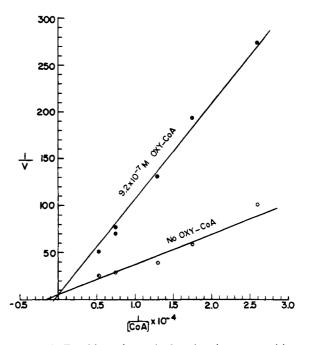


FIGURE 4: Double-reciprocal plot showing competitive inhibition of the phosphotransacetylase reaction by oxy-CoA isolated from peak 3, Figure 3B. The ordinate is the number of seconds required to observe an $OD_{233m\mu}$ change of 0.1, after addition of enzyme. The concentration of oxy-CoA is estimated from its absorbency at 260 m μ .

reaction to the phosphate spray reagent, the elution position of "X," and its R_F in system A (cf. Table I) implicated AMP. However its R_F on DEAE paper

3885

was not similar to AMP. Paucity of this material hindered further attempts at identification.

The ability of the crude enzyme preparation, containing dephospho-CoA pyrophosphorylase and dephospho-CoA kinase, to cope with the dephosphooxy-CoA is confirmed in Figure 3. The reversibility of the dephospho-CoA pyrophosphorylase reaction is indicated in Figure 3A. Incubation of 2 μ moles of dephosphooxy-CoA with 40 μ moles of sodium pyrophosphate produced 5.8 ODU (0.38 μ mole) of ATP. Dephospho-CoA kinase readily catalyzes the phosphorylation of dephosphooxy-CoA by ATP (Figure 3B). The oxy-CoA peak contained 11.2 ODU (0.75 μ mole) and was isolated in a 38% yield based upon the substrate concentration of 2 μ moles.

The identity of oxy-CoA isolated from peak 3, Figure 3B, was verified by inhibition studies with the phosphotransacetylase reaction in addition to routine paper chromatography and venom phosphodiesterase digestion. The K_i , 4.2×10^{-7} (Figure 4), is consistent with the value, 3.5×10^{-7} , reported for the crystalline synthetic compound (Miller *et al.*, 1966).

Discussion

This study demonstrates the enzymatic conversion of D-oxypantetheine 4'-phosphate to oxy-CoA. The results indicate that the thiol group is not intimately involved in the *in vitro* conversion of pantetheine 4'-phosphate to CoA by the beef liver system. An ancillary result of this study is the demonstration of a feasible enzymatic route for the synthesis of oxy-CoA or CoA labeled with ¹⁴C in the adenosine moiety.

These results also may explain the effect oxypantetheine has on *Lactobacillus helveticus*. Oxypantetheine is a competitive growth inhibitor of this pentetheine-requiring microorganism (Stewart et al., 1955; Pierpoint et al., 1955). It is probable that oxypentetheine inhibits the growth of L. helveticus by an in vivo synthesis of oxy-CoA. While not proving this proposition, this study supports it, especially if oxy-CoA in vivo has as broad an enzyme spectrum of CoA antagonism as Chase et al. (1966) have reported for desulfo-CoA in vitro.

References

Bandurski, R. A., and Axelrod, B. (1951), *J. Biol. Chem.* 193, 405.

Bergmeyer, H. U., Holz, G., Klotzsch, H., and Lang, G. (1963), *Biochem. Z. 338*, 114.

Bray, G. A. (1960), Anal. Biochem. 1, 279.

Chase, J. F. A., Middleton, B., and Tubbs, P. K. (1966), Biochem. Biophys. Res. Commun. 23, 208.

Hoagland, M. B., and Novelli, G. D. (1954), J. Biol. Chem. 207, 757.

Layne, E. (1957), Methods Enzymol. 3, 450.

Miller, T. L., Rowley, G. L., and Stewart, C. J. (1966), J. Am. Chem. Soc. 88, 2299.

Moffatt, J. G., and Khorana, H. G. (1961), J. Am. Chem. Soc. 83, 633.

Pierpoint, W. S., Hughes, D. E., Baddiley, J., and Mathias, A. P. (1955), *Biochem. J.* 61, 190.

Stadtman, E. R. (1952), J. Biol. Chem. 196, 527.

Stewart, C. J., Cheldelin, V. H., and King, T. E. (1955), J. Biol. Chem. 215, 319.

Stewart, C. J., and Miller, T. L. (1965), Biochem. Biophys. Res. Commun. 20, 433.

Stewart, C.J., Miller, T. L., and Ball, W. J., Jr. (1966), Federation Proc. 25, 217.